BOJ_10971 : 외판원 순회 2
문제
외판원 순회 문제는 영어로 Traveling Salesman problem (TSP) 라고 불리는 문제로 computer science 분야에서 가장 중요하게 취급되는 문제 중 하나이다. 여러 가지 변종 문제가 있으나, 여기서는 가장 일반적인 형태의 문제를 살펴보자.
1번부터 N번까지 번호가 매겨져 있는 도시들이 있고, 도시들 사이에는 길이 있다. (길이 없을 수도 있다) 이제 한 외판원이 어느 한 도시에서 출발해 N개의 도시를 모두 거쳐 다시 원래의 도시로 돌아오는 순회 여행 경로를 계획하려고 한다. 단, 한 번 갔던 도시로는 다시 갈 수 없다. (맨 마지막에 여행을 출발했던 도시로 돌아오는 것은 예외) 이런 여행 경로는 여러 가지가 있을 수 있는데, 가장 적은 비용을 들이는 여행 계획을 세우고자 한다.
각 도시간에 이동하는데 드는 비용은 행렬 W[i][j]형태로 주어진다. W[i][j]는 도시 i에서 도시 j로 가기 위한 비용을 나타낸다. 비용은 대칭적이지 않다. 즉, W[i][j] 는 W[j][i]와 다를 수 있다. 모든 도시간의 비용은 양의 정수이다. W[i][i]는 항상 0이다. 경우에 따라서 도시 i에서 도시 j로 갈 수 없는 경우도 있으며 이럴 경우 W[i][j]=0이라고 하자.
N과 비용 행렬이 주어졌을 때, 가장 적은 비용을 들이는 외판원의 순회 여행 경로를 구하는 프로그램을 작성하시오.
입력
첫째 줄에 도시의 수 N이 주어진다. (2 ≤ N ≤ 10) 다음 N개의 줄에는 비용 행렬이 주어진다. 각 행렬의 성분은 1,000,000 이하의 양의 정수이며, 갈 수 없는 경우는 0이 주어진다. W[i][j]는 도시 i에서 j로 가기 위한 비용을 나타낸다.
항상 순회할 수 있는 경우만 입력으로 주어진다.
출력
첫째 줄에 외판원의 순회에 필요한 최소 비용을 출력한다.
C++ 코드
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
int main() {
int n;
cin >> n;
vector<int> ok;
vector< vector<int>> a(n, vector<int>(n, 0));
for (int i = 0; i < n; i++) {
ok.push_back(i);
for (int j = 0; j < n; j++) {
cin >> a[i][j];
}
}
long long ans = 20'000'000;
do {
long long sum = 0;
bool check = false;
for (int i = 0; i < n; i++) {
if (i == n - 1 ) {
sum += a[ok[n - 1]][ok[0]];
if (a[ok[n - 1]][ok[0]] == 0) check = true;
break;
}
sum += a[ok[i]][ok[i + 1]];
if (a[ok[i]][ok[i + 1]] == 0) check = true;
}
if (ans > sum && check == false) ans = sum;
} while (next_permutation(ok.begin(), ok.end()));
cout << ans << '\n';
return 0;
}
Leave a comment